Model Question Paper 2021-22 Mathematics Class-12

TIME – 3 Hrs 15 Min

Maximum Marks - 100

Note: First 15 minutes are allotted for the candidates to read the question paper.

Instructions :

- (i) There are in all *nine* questions in this question paper.
- (ii) *All* questions are compulsory.
- (iii) In the beginning of each question, the number of parts to be attempted has been clearly mentioned.
- (iv) Marks allotted to the questions are indicated against them.
- (v) Start solving from the first question and proceed to solve till the last one.
- (vi) Do not waste your time over a question you cannot solve.

1. Choose the correct option and write down in your answer sheet.

- (a) Suppose that the function defined as f(x) = 3x is $f: R \to R$, select the correct option.
 - (i) f is one-one onto (ii) f is many-one onto
 - (iii) f is one-one but not onto (iv) f is neither one-one nor onto
- (b) If R is a relation on the set N, defined as $R=\{(a,b): a=b-2, b>6\}$, select the correct option from the following. 01
 - (i) $(2, 4) \in \mathbb{R}$ (ii) $(3, 8) \in \mathbb{R}$
 - (iii) $(6, 8) \in \mathbb{R}$ (iv) $(8, 7) \in \mathbb{R}$

(c) Find the value of integral $\int xe^{x} dx$

(i)
$$e^{x}$$
 (ii) $(x+1)e^{x}$ (iii) $(x-1)e^{x}$ (iv) $\frac{x^{2}}{2}e^{x}$

01

- (d) Order of the differential equation $2x^2 \frac{d^2y}{dx^2} 3\frac{dy}{dx} + y = 0$ is 01
 - (i) 2 (ii) 1 (iii) 0 (iv) not defined
- (e) If the vector's $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} 4\hat{j} + \lambda\hat{k}$ are mutually perpendicular, then find the value of λ -(i) 3 (ii) 2 (iii) 4 (iv) 0

2. Attempt all the parts:

- (a) Find the principal value of $\operatorname{Cot}^{-1}\left(\frac{-1}{\sqrt{3}}\right)$.
- (b) Show that the function f(x) = |x|, is continuous at x = 0. 01

(c) Find the order and power of the differential equation

$$xy \frac{d^2y}{dx^2} + x \left(\frac{dy}{dx}\right)^2 - y \frac{dy}{dx} = 0.$$
 01

(d) Find the maximum value of z=3x+4y subject to the following constraints $x+y \le 4, x \ge 0, y \ge 0$.

(e) If
$$P(A) = \frac{7}{13}$$
, $P(B) = \frac{9}{13}$ and $P(A \cap B) = \frac{4}{13}$ then find the value of $P(A/B)$. 01

3. Attempts all the parts:

(a) If $A = \{1,2\}$ and $B = \{3,4\}$ then find the number of relations between A and B.

(b) If
$$y = A \sin x + B \cos x$$
 then prove that $\frac{d^2 y}{dx^2} + y = 0.$ 02

02

- (c) Find the angle between the vectors $\hat{i} 2\hat{j} + 3\hat{k}$ and $3\hat{i} 2\hat{j} + \hat{k}$.
- (d) A problem of mathematics is given to three students. Probabilities of solving the problem by them are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. If all the three students 02 try their best, then find the probability that problem is solved.

4. Attempt all the parts.

- (a) Show that the function defined on R as f(x) = 7x 3 is an increasing 02 function.
- (b) Find the unit vector perpendicular to each of vectors $(\bar{a} + \bar{b})$ and $(\bar{a} \bar{b})$ 02 where $\bar{a} = \hat{i} + \hat{j} + \hat{k}$, $\bar{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.
- (c) Find the area of parallelogram whose adjacent sides are given by 02 vectors $\bar{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\bar{b} = \hat{i} \hat{j} + \hat{k}$.
- (d) A and B are two given events where $P(A) = \frac{1}{2}$, $P(A \cup B) = \frac{3}{5}$ and P(B) = P. 02 Find the value of P if events are mutually exclusive.

5. Attempt all the parts.

(a) Prove that the relation R on the set of integers Z is defined as $R = \{(a, b) : (a-b) \text{ is divisible by number } 2\}$ is an equivalence relation. b+c a a

(b) Prove that
$$\begin{vmatrix} b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc.$$
 05

(c) Differentiate the function
$$(\sin x)^{\cos x}$$
 with respect to x. 05

- (d) Find the $\int_{-\pi/4}^{\pi/4} \sin^2 x \, dx$. 05
- (e) Find the shortest distance between the lines $\bar{r} = \hat{i} + 2\hat{j} 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$ and $\bar{r} = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(2\hat{i} + 3\hat{j} + 6\hat{k})$.

6. Attempt all the parts:

- (a) Show that the function $f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$ is discontinuous at x = 0. 05
- (b) Find the area bounded by the parabolas $y = x^2$ and $y^2 = x$. 05
- (c) Find the equation of the plane passing through the intersection of the 05 planes $\bar{r}.(\hat{i}+\hat{j}+\hat{k})=6$ and $\bar{r}.(2\hat{i}+3\hat{j}+4\hat{k})=-5$ and the point (1, 1, 1).

- (d) Minimize z=3x+2y subject to the constraints; $x+y \ge 8$, $3x+5y \le 15$, $x \ge 0$, $y \ge 0$
- (e) In a hostel 60% students read Hindi newspaper, 40% students read English newspaper and 20% read both newspapers -
 - (i) Find the probability of the students who read neither Hindi $2\frac{1}{2}$
 - (ii) If she reads Hindi newspaper then what is the probability that $2\frac{1}{2}$

7. Attempt any one of the following:

(a) If
$$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ 08
then find out the value of $(AB)^{-1}$

then find out the value of $(AB)^{-1}$.

(b) Solve the following system of linear equations by the matrix method: 3x - 2y + 3z = 8 2x + y - z = 1 4x - 3y + 2z = 4

8. Attempt any one of the following:

- (a) Find the area bounded by the parabola $y^2 = 4ax$ and its latus rectum. 08
- (b) Find the general solution of the differential equation $\frac{dy}{dx} y = \cos x$. 08

9. Attempt any one of the following:

(a) Find the value of the integral $\int_0^{\frac{\pi}{2}} \log \sin x \, dx$. 08

(b) Evaluate
$$\pi \int_{0}^{\pi} \frac{x dx}{a^2 Cos^2 x + b^2 Sin^2 x}$$
. 08

05

08